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IIU!RODUC!FION 

The purpose of t h i s  manual is t o  provide a caupact reference f o r  the  thermo- 
L-- 

physical properties rec@red i n  the design of space radiator-condensers. 

e f f o r t  w a s  performed as part of the Space Radistor-Condenser Design and Per- 

This 
x ” _ _  - -  _- . 

formance computer m- un&r contract m g-UB4 with the NASA - Space- 
c r a f t  Center. It is intended that this manual supplement these computer programs 

by providing, i n  one report, the fluid and construction materials pruperties 

required as inputs. 

SUMMARY 

~ ~ E H T l l b o R A T o l w E s  
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Section 1.0 presents the results of a power system survey undertaken t o  assess - 
t he  u t i l i za t ion  of worirhg fluids and materials on actual and proposed space 

e l ec t r i c  parer systems emplaying direct condenser-radiators. 

Section 2.0 contains data on f ive  working fluids. 

a survey of their current use in  actual direct  condensing systems or  contemplated 

future systems. 

Their selection is based on 

Section 3.0 contains the properties of candidate radiator materids. 

other than those i n  current o r  proposed use have been included t o  extend the 

u s e m e s s  of t h e  ccmptlter prograin as bonding and joining technology advances. 

Materials fabrication compatibility and working f lu id  compatibility are indicated 

t o  a id  i n  the  selection of suitable radiator-condenser materials f o r  a given 

application. 

Materials 

Section 4.0 presents the  emittance coatings which wou ld  be suitable f o r  extended 

service i n  space-vacuum conditions. Solar and thermal absorptivity values are 

- 1 -  
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included where available f r o m  the  literature. 

with substrates, methods of application, and service temperature limitations are 

tabulated to aid i n  the proper coating selection for  t h e  intended application. 

Coating bonding compatibility 

Section 5.0 presents some of the areas which, upon searching the literature, 

were found t o  be i n  need of further study. 

- 2 -  
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1.0 POWER SYSTEM SURVEY 

A survey of space e lec t r ica l  power systems employing direct  condenser-radiators 

presently being investigated and those considered as primary or  candidate systems 

f o r  spacecraft applications is  suarmarized in Table 1. Only those systems which 

have received serious dievelcpxmtal attention or extensive study were included. 

Since t h e  only sources ut i l ized in t h i s  survey were exoteric company and 

government reports, some systems may have inadvertently been overlooked. With 

these q d i f i c a t i o n s ,  t he  f lu ids  selected are: mercury, potassium, water, 

rubidium and the organics, Dowtherm-A, ortho-xylene and ethylbenzene. 

1.1 Mercuq 

During the last decade, mercury rose as the  most prominent Rankine cycle working 

f lu id  for e lec t r i ca l  generation space application. 

reactor powered SNAP 2 and SNAP 8, and the solar  powered Sunflower accelerated 

mercury t o  the foref’ront as a space system working fluid.  

intended mission spelled the end of t h e  SNAP 1 (SPUD) system. 

or iginal ly  space oriented, has been redirected t o  a study-type system test 

program due t o  lack of specific application. 

similar fate, being relegated t o  a component development program as emphasis 

shifted from high t o  l o w  output parer generation systems. 

solar powered Sunflower system ha6 been bypassed f o r  lack of a mission and waning 

in te res t  in solar powered mercury systems. 

s t i l l  remains 88 one of t h e  more prominent working f lu ids  f o r  R a n k i n e  cycle power 

plants with outputs ranging from 3 t o  300 KW. 

The S W  1 (SPUD), the  thermal 

The cancellation of the 

The SNAP 2 system, 

The S W  8 program suffered a 

The highly successful 

Regardless of these events, mercury 

- 3 -  



Radiator materials in direct  mercury radiator-condensers varied depending on 

intended application. 

stainless steel throughout. 

considered: 

tubes and copper fins. 

of 347 stainless steel tubes and UOO-0 (non-structurel) aluminum fins. 

the SNAP 8 di rec t  radiator-condenser designs u t i l i zed  Haynes Alloy No. 25 tubing 

and aluminum fins.  

The SNAP 1 (SPUD) radiator w a s  fabricated from 316 

Two types of SNAP 2 radiator-condensers w e r e  

Hqynes Alloy No. 25 tubing and aluminum fins and 17.7 molybdenum 

The Sunflower system used a radiator-condenser composed 

One of 

1.2 Potassium 

Potassium found application 86 a working f l u i d  i n  the SPUR/SNAP 50 system which 

has also been reduced t o  component development. The use of potassium i s  s t i l l  

very at t ract ive for future space applications pending fast reactor revival and 

t he  avai labi l i ty  of container materials suitable f o r  10,OOO hours or more 

service at the  higher temperatures seen in these systems. In  1965, T R W  prepared 

a potassium Rankine cycle test capsule t o  evaluate the  boiling and condensing 

properties of potassium i n  space. A failure of t he  boost vehicle during launch 

led t o  an abrupt conclusion t o  the  experiment. Another test capsule i s  being 

b u i l t  t o  repeat the experiment, indicating a continuing interest  i n  potassium 

as a cycle working fluid. 

The radiator materids proposed for  t h e  SPUR/SNAP 50 direct condenser were 316 

stainless steel tubing and 316 stainless steel clad copper f ins .  The T R W  heat 

t ransfer  test  capsule radiator-condenser u t i l i zed  316 stainless steel tubing w i t h  

copper f i n s  brazed t o  the tubing (88). 

TRw EQUIPMENT LABORATORIES , I  
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1 . 3  Water 

A steam system w a s  investigated u t i l i z ing  the SmAp 8 reactor by ASTRA, Inc. (73). 

The proposed systems utilized nuclear and solar heat sources. 

were i n i t i a l l y  considered to  be aluminum (tube and f in s )  with beryllium as the  

ut,biate inaterial. 

studies in this e a .  

Radiator-condensers 

---.I. mT & &"her c q & e s  hme q m s ~ r e d  internally funded 

1.4 Rubidium 

The i n i t i a l  working fluid of the ASTEC p r o m  (Advanced Solar Turbo Electric 

Concept) was rubidium. The program wa8 redirected before reaching the  system stage. 

A radiator-condenser test segnent (tubes and fins) was fabricated from Inconel. 

B e r y l l i u m  tubes and fins would have been the ultimate radiator-condenser materials. 

Rubidium is not considered to be a lurely working f l u i d  f o r  the space applications 

presently under investigation. 

1.5 Organics 

Interest  i n  organic f lu ids  f o r  space power agplications has developed ragidly i n  

t h e  last f i v e  yesrs. 

program f o r  the Navy and Air Force fo r  a 1.5 KY solar power plant using Dowtherm-A. 

No details are available as to the mSterials being considered. 

t h a t  Dowtherm-A is the most favorable working f lu id  f o r  an isotope-heated system 

as a pa r t  of the  Manned Mars Mission Study (75). 

a contract t o  build a system f o r  a U t i - t u b e  Orbital  Rankine Experiment (77) 

using Dowthem-A as t he  working fluid. 

be 347 stainless steel. 

Sundstrand (74) i s  currently involved i n  a development 

T R W  has concluded 

TRW has recently been awarded 

Tubes and headers f o r  t h i s  system w i l l  

Mns will be 5083 &luminum. Various Binary systems 

- 5 -  
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proposed included ortho-xylene or ethylbenzene as t h e  bottom cycle fluid. 

Aluminum tubes and f i n s  were  proposed i n  most cases. 

A comparison of various organic working f lu ids  and t h e i r  properties is  shown i n  

Table 2. 

as the  most promising f o r  space systems, based on favorable ccmbinations of t h e i r  

v q o r  pressure/temperature relationships, freezing point, corrosive nature, and 

thermal s tabi l i ty .  

From t h i s  chart ,  ethylbenzene, ortho-xylene and Dowtherm-A were chosen 

- 6 -  
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2.0 ~ - P H ! l S S C A L  FFtOFEEiTm OF WORWOG 

!be therm-physical properties of eight prima,ry and candidate working f lu ids  

have been prepared as a m c t i o n  of te!xperature. These include ___I^ wate.e.-mex~ury, - 
cc_ 

rubidium, potassium and three organics (ortho-xylene, ethylbenzene and I)owthexm-A). 
-./- . ~ - - - e  .--_._ , l _ .  

The working ffuids, t he i r  respective properties and a mfemi3e figiire inmiber for 
I -  

- # .*- - _" "- - _. 

each property are summarized in Table 3. 

The properties compiled f o r  each working f lu id  are those necessary as inputs t o  

the  computer programs and are as follows: molecular w e i g h t ,  heat of vaporization, 

specific heat, specific heat r a t i o ,  density, absolute viscosity, liquid-vapor 

m a c e  tension, t h e m  conductivity and vapor pressure. These appear on 

Hgures 1 through 49. 

freezing point, c r i t i c a l  temperature, c r i t i c a l  pressure, specific heat r a t io  and, 

Single valued quantities are given for m o ~ e c d a r  weight, 

i n  some cases, specific heat. A l l  data is presented in the units required by the 

design and performance analysis radiator cosnputer programs. 

In most instances, the information is the result of the l a t e s t  t e s t  data avd lab le  

in the literature, but in some cases, most notably rubidium, the  curves represent 

calculated values since no t e s t  data could be found. 

- 7 -  
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3.0 CONSTRUCTION MMERULS PROPERTIES 

3.1 

Seven properties were selected and tabulated for  each of the  candidate radiator 

materiaLs. These properties include density, tension moudules of e las t ic i ty ,  

thermal  conductivity, specific heat, themel expansion, yield strength ( .2$), 

and melting temperature. Only the  density, tension modulus of e la s t i c i ty  and 

thermal conductivity a r e  required as inputs t o  the computer program, but thermal 

expansion was included t o  assess fin/tube compatibility, yield strength and 

melting temperature t o  establish service limits, and specific heat t o  facilitate 

transient study. A cross-reference between each candidate material and the 

respective property curves is given in Table 4 including figure number and the  

reference numbers. 

as a function of temperature in the  referenced figures. 

value is  contained direct ly  in Table 4. 

temperature are found on Figures 50 through 58. 

uni t s  required by the design and performance analysis radiator computer programs. 

Tube, Header and Fin Thermo-Physical Properties 

Where important and available, t h e  information is presented 

Otherwise, a single 

Materials properties as a f h c t i o n  of 

AU data i s  presented i n  t h e  

Some of the properties listed vary widely depending on the form of the material, 

i.e., sheet or bar, heat-treated or  wheat-treated, etc. This is  especially t rue  

of the yield strength. In each case, the  form most representative of t ha t  usable 

i n  condenser-radiators w a s  listed or, i n  some cases, a range i f  more than one 

form i s  applicable. 

3.2 Materials Compatibility with Working Fluids 

A literature search w a s  conducted t o  obtain materials/working f lu id  compatibility 

infonuation. The working f lu ids  considered were those found t o  be candidate 

- 8 -  
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fluids for space systems as a result of the system survey (section LO), namely, 

n~rcury, water, rubidium, p o t s s s i ~ l  and selected organics. 

considered included, but were not limited to,  those candidate materies of 

section 2.0. 

The materials 

Tables 5(a) and 5(b) are a sumarary of the informstion. 

The temperatures on this table represent (a) the test temperature at vfi ich l i t t l e  

or  no corrosion (loss or gaAn i n  weight) was detected, (b) acceptable corrosion 

temperature limit e x t n ~ o l a t e d  frau test data at  lower temperatures, o r  (c)  

temperature limits based on tests of similar fluids. 

duration is less than lo00 hours, more than 10,OOO hours, or  i n  same cases as 

noted. 

condenser operating temperature for that fluid is higher than the service tempera- 

ture  of the material or (3) the canbination of fluid and container materid is  

i l logical.  

In  each case, the test 

Where no data is presented either (1) none could be faund, (2) the normal 

3.2.1 Water 

The temperatures given i n  Tables 5(a) and 5(b) are based on t h e  results of both 

s t a t i c  and dynamic tests. 

The static corrosion rates were determined as a byproduct of autoclave tests 

conducted at temperatures below 500 F. 

purposes as crevice corrosion andbearing combination studies i n  connection with 

water-cooled reactor systems. 

0 The tests were perfonned f o r  such 

Dynamic testing was carried aut at temperatures between 500 and 6009 which i s  

the normal operating range of water-cooled reactors. 

t o  30 f p s .  

Velocities ranged from 1/60 

The dynamic corrosion rates of materials studies a t  500% is increased 

- - 9 -  
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between 5 and 20 t w e e  when tested at  6009 (17). 

The effects of water velocity on the  corrosion rate of 300 series s ta inless  

s t e e l  are delineated i n  reference (19). 

solution velocity was established af'ter 400 test  hours. 

1 5  times tha t  amount as velocit ies were t r ip led  and quadrupled f o r  t h e  same 

number of hours tested. 

A weight loss of 10 mg/cm2 at 10 f't/sec 

The rate increased 3 t o  

Studies (18) on high purity water corrosion indicated tha t  t h e  use of water w i t h  

a pH above 10 caused the corrosion rate of mild steel t o  decrease with exposure 

t i m e .  The corrosion of aluminum and i ts  allays above took the form of 

serious intergranular attack. 

temperature range t o  about 60o0F (19). 

condition) may not be feasible i n  fuel c e l l  radiators using hydrogen and €$O 

mixtures. 

Decreasing the  pH t o  2 could extend t h e  uperating 

However, regulation of pH t o  2 (acidic 

Aluminum alloys containing nickel, iron, titanium, si l icon, beryllium and zirconium 

tend t o  displace the  cathodic reaction from the aluminum surface and make the 

alloys less sensitive t o  corrosion. 

also found t o  be beneficial. 

The addition of hydrogen t o  the water w a s  

A considerable increase of corrosion i n  flawing as against s t a t i c  water w a s  noted 

by researchers (19) and increasing the r a t i o  of area of aluminum exposed t o  

volume of water was found t o  reduce dynamic corrosion. 

Beryllium and i t s  alloys showed good resistance t o  corrosion below 200'F (about 

one mil penetration per year). Above t h i s  temperature the corrosion rate increased 

- 10 - 
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I rapidly and became more unpredictable (19). 

Magnesium alloys had high corrosion rates (0.1 -/day) at 300% (19). 

use should be restr ic ted below 150% for long duration operation. 

Their 

mamie eomsia i  s%-tit~ies 011 cvmez-zickel ( T Q - ~ Q )  micat& %hat ~ Y W  corrosion 

rates could be maintained a t  200% with 30 i p s  w a t e r  velocity. 

rate could be maintained by the addition of hydmgen into the water. 

rates at 500% and 30 f p s  without the presence of hydrogen increase about 200 

t i m e s  compared t o  the 200% rate of 34 mg/in2-yr. 

at 7 throughout the t e s t s  (17). 

rapidly with increasing water velocity and temperature. 

was  immediately available on the refractory metals. 

A t  500% the same 

Corrosion 

The water pH was maintained 

The corrosion rate of copper tubing increases 

No w a t e r  corrosion data 

3.2.2 Mercury 

The temperatures indicated i n  Tables 5(a) and 5(b) axe a result of extensive 

mercury materials compatibility work done at TRW (30,31,32). 

and circulation loops operating between 700 and U00% provided the basis f o r  

most corrosion temperature limitations. 

on selected materials by NASA-Lewis. 

have provided endurance tes t ing  data f o r  boiling systems i n  the SNAP 8 temperature 

Refluxing capsules 

These tests were corroborated t o  130O0F 

Studies at Brookhaven National Laboratory 

range and higher (86). 

3.2.3 Rubidium 

Materials c q a t i b i l i t y  data with rubidium include beryllium, cobalt alloys, 

nickel alloys, some refractories, s ta inless  steels and vanadium. Testing duration 
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has been i n  the  1000 hour range. 

resu l t  of the nonaal condensing temperature range associated with rubidium cycles 

( 1000-l~OO°F). 

only  those materials that  can s t ructural ly  withstand the temperature range. 

Refluxing l iquid vapor capsules and some dynamic loop t es t ing  provided the bulk 

of information available i n  the  l i terature .  

"he temperature range investigated is a d i rec t  

Compatibility studies have generally been aimed at screening 

3.2.4 Potassium 

Refluxing capsules and dynamic loop tests of 1000 hours or  less dominate the  

current investigations and provide the basis f o r  the corrosion temperature limits 

shown i n  Table 5. 

velocity potassium at 4 in/sec indicated corrosion r a t e s  of about 0.12 mils per 

year (14). 

Dynamic 5000 hours 316 stainless s t ee l  loop tests with low 

3.2.5 Hydrocarbons 

3.2.5.1 Dowtherm-A 

Corrosion data f o r  Dowtherm i s  limited. The f lu id  i s  not corrosive and does not 

scale w i t h  standard materials of construction. The materials containing temper- 

atures i n  Table 5 are considered t o  be standard. The refractory metals show no 

compatibility temperatures but probably are campatible t o  the operating limits 

of Dowtherm-A. 

When contaminated with water, Dowtherm reacts t o  form highly corrosive hydrocholoric 

acid. 

subject t o  corrosion by the acid should be used with caution. 

I n  t h i s  respect, where contamination wi th  water is  possible, materials 

- 12 - 

I 
I 
1 
I 
II 
I 
I 
I, 
I 
I 
I 
I 
I '  
1 '  
I 
I 
I 
1 
I 



3.2.5.2 Ortho-xylene and Ethylbenzene 

Over lo00 hours of tes t ing  indicated tha t  300 series stainless steel was  not 

attacked when suspended i n  l imid ortho-xylene at 55OoF. 

at 180% on 347 stainless steel, 406 stainless steel, 1010 carbon steel, pure 

Low temperature tests 

aiuminum, aiuminum alloys, kconel, ' J W m  &!lay (Ti - 6Al. = 4V) md 9-e~ 25 

showed no evidence of' attack (24). Capsule tes ts  of 304 stainless steel and 

1010 carbon steel at about 700% f o r  almost lo00 hours indicated no effects on 

either material (25). 

and ethylbenzene are actual3.y f o r  biphenyl and isoproplybiphenyl. 

tut ion w a s  made because of the  similari ty i n  t h e i r  corrosion characteristics and 

the  ava i lab i l i ty  of data. 

The remainder of the corrosion data listed f o r  ortho-xylene 

This substi- 

Extensive static corrosion tests (26) w e r e  made with biphenyl at 500% f o r  4500 

hours and 750%' f o r  4700 hours. W s t  of the general material categories listed 

on Tables  5(a) and 5(b) w e r e  covered by the tests. Dynmic corrosion rates were 

available f o r  isoproplybiphenyl at veloci t ies  frm 0 t o  27 f'ps. Corrosion rates 

increased by a factor  of 20 at 27 f p s  Over s t a t i c  corrosion rates f o r  300 series 

stainless. 

3.3 "ube and H e a d e r  Material Meteoroid Protection Capability 

Meteoroid col l is ion represents the greatest potent ia l  hazard t o  f l u i d  radiators 

i n  space. 

theories used t o  predict amor thickness requiremen ts. 

based on material properties (modules of e las t ic i ty ,  hardness and density) as 

well as some evaluation of meteoroid flux. 

by NASA-Lewis u t i l i ze s  the  modulus of e l a s t i c i ty  and density of the armor. 

D a t a  from unmanned ear th  orbit ing satellites has reinforced ear ly  

Correlations are presently 

The correlation currently advocated 

- 13 - 
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This approach is  used by TRW t o  determine the  meteoroid armor thickness i n  t h e  

radiator design programs. 

The following expression is a form of t h a t  result ing fram the  work by Loeff'ler, 

Lieblein,  Clough of NASA-Lewis and Whipple, Cook and other6 at Hamard ( 8 4 ) :  

where ta = armor thickness, inches 

A = vulnerable area, ft2 (taken as the inside tube area) 

P(o) = probability of no meteoroid penetrations 

f = armor density, lb/in. 

E = modulus of e l a s t i c i ty  of armor, p s i  

= mission t i m e ,  days 

The properties of density ( p )  and modulus of e l a s t i c i ty  (E) f o r  all radiator 

materials are referenced i n  Table 4. h o r  w e i g h t  i s  proportional t o  the  term 

p 5/6 E - l / 3 ,  

Recent hypervelocity impact investigations of advanced armor and/or fin materials 

such as beryllium and pyrolytic graphite have indicated tha t  these materials 

exhibit br i t t le  characteristics which make them unsuitable as space radiator 

s t r u c t u r d  members (115). In  t h i s  respect, t h e  present approach advanced by 

NASA t o  determine meteoroid armor should be used with rest raint .  

have t o  be modified t o  account for  the very b r i t t l e  radiator materials which 

of fer  very attractive,  but p06Sibly erroneous, w e i g h t  advantages over more 

conventional materials such as aluminum and steel under the present method of 

The theory w i l l  

- 14 - 



m o r  determination. 

3.4 Compatibility of Radiator Fin Materials t o  Tube Materials 

Table 6 lists cambinations of possible space radiator tube and f i n  materials. 

These have been ccmpared fram the  standpoint of bonding and joining techniques, 

thermal expansion limitations and susceptibil i ty t o  galvanic corrosion. 

tube material. canbinations masked with a dash (-) indicate tha t  the combination 

is either not applicable, not feasible, o r  no information is available on the  

union . 

The f i n  

3.4.1 Bonding and Joining Techniques 

The method(s) by which fin materials can be fastened t o  tube materials is highly 

dependent on the types of material involved and the radiator operating tempera- 

ture. 

manual. Bowever, the major techniques are delineated below. 

A detailed discussion of each possible method is beyond the scope of this 

1. Welding 

a) hellarc 

b) arc 

c )  electron beam 

2. Brszing 

a) torch 

b) f’urnace 

3. Mechanical 

a )  casting 

b) clamping and crimping (interference joints) 

c)  pressure lamination 

- 15 - 
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d)  extrusions 

4. chemical 

Another important aspect of joining dissimilar fin-tube materials is the  

consideration of thermal resistance (82, 83). 

mechanical techniques have been employed. 

w a l l  and a f i n  converts the mechanism of heat transmission from highly e f f ic ien t  

conduction t o  radiation. 

t o  f i n  increases t h e  condensing temperature. 

"his i s  especially important when 

The presence of a gap between a tube 

An increase i n  t h i s  thermal resistance from tube w a l l  

3.4.2 Thermal Expansion Limitations 

Large differences i n  thermal expansion coefficients between tube and f i n  radiator 

materials subjected t o  l u g e  temperature variations require special attention. 

The use of these combinations is  normally not recommended from a pract ical  or  an 

economic standpoint. 

can be m a d e  by building up layers of different thermal expansion materials, main- 

taining the difference i n  thermal expansion coefficients small between adjacent 

layers. 

of temperature exre compared i n  Figures 57 and 58. 

If a requirement f o r  such combinations exis ts ,  t h e  bond 

Thermal. expansion coefficients f o r  vmious radiator material as a f'unction 

3.4.3 Galvanic Corrosion 

Direct contact between dissimilar metals such as copper and aluminum or  aluminum 

and steel axe susceptible t o  galvanic corrosion (35). 

t o  be one of these environments. 

of radiators of these types without adequate protection should be avoided. 

Galvanic corrosion norma,lly takes the form of severe pit t ing.  

S a l t  water is considered 

Ekcessive exposure (usually during ground tes t ing)  

- 16 - 
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4.0 RADIATOR COATINGS 

Radiator coatings prwide  protection f o r  the  substrate m e t a l  from vacuum 

conditions of space as w e l l  as providing control of the  thexmd. radiative and 

absorptive properties of' t he  surface. An effective radiator coating must have 

a high Lnfra-red or  YnernwL &%tame md, b the case ef' a Im teqeratxre 

radiator, low solar absorptance. Coatings meeting these requirements have been 

developed and, i n  many cases, extensively tested under sjmulated vacuum 

conditions of space. 

A l i t e r a t u r e  survey w a s  conductedto determine the most effective coatings, their  

applicable temperature range, the methods of application, t he  substrates Wli- 

cable, and the tes t ing  duration. The results of this survey are shown i n  Tables 

7 ( 4  throw3h 7(g). 

4.1 W t t a n c e  

"he tabulation of t o t a l  hemispherical emittance values i n  Tables 7(a) through 

7(g) includes only those coatings o r  surfaces with values greater than -7 as 

determined at test temperatures above 30O0F f o r  a minimum of 20 hours in a 

simulated space environmerrt. 

The results of' extensive emittance coating studies by Pratt and Whitney Aircrm 

(54) are reproduced in Figure 59. 

Temperature.) 

temperature s t a b i l i t y  under vacuum conditions we shown. 

program, temperatures w e r e  measured on the netal substrates. "his eliminated the  

need f o r  temperature drop and opaqueness corrections and allows direct  use of the  

(Total Hemispherical Emittance versus 

O n l y  those coatings possessing high emittances and good high 

In  the above tes t ing  

- 17 - 
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emittances i n  radiator design. 

4.2 Absorptivity 

There are two types of thermal radiati n i n  space. The first is solar, e ther 

di rec t  or  reflected f m  planets (albedo), w i t h  a wave length of 0.2 t o  3.0 

microns. The second i s  infra-red or thermal being emitted from planets and 

other astronomical bodies wi th  a wave length of 5 t o  50 microns. 

wave length difference, almost all surfaces have difference absorptances t o  the 

two types of radiation. 

Due t o  t h i s  

Thermal absorptance i s  taken as being equal t o  thermal emittance and is usually 

high as a result of a desire f o r  a high t h e n d .  emittance. 

on the other hand, is  somewhat independent of thermal emittance and a balance 

between high thermal emittance and low solar absorptance can be obtained and is  

desirable, especially fo r  a low temperature radiator. 

solar absorptivity is a f'unction of the  temperature leve l  of the  radiator and the  

intensi ty  of t h e  incident solar energy. Solar absorptivity values have been 

determined i n  the  laboratory f o r  various structural  materials and coatings. 

These have been included as par t  of Tables 7(a) through 7(g). 

Solar absorptance, 

The importance of the 

4.3 Comparison Parameter ( OC s/ H) 

The r a t i o  of solar absorptivity t o  t o t a l  hemispherical emittance ( 4  s/ H) is  

an important parameter f o r  comparing the  performance characterist ics of various 

radiator materials. 

Since the ideal is  unattainable i n  real i ty ,  materiaJ.8 with 6; s/ E 
than . 3  are considered acceptable (66). 

The ideal  radiator surface would have an 6 s/ c H  = 0. 

r a t io s  less 

Values f o r  ( s/ e H) are shown i n  
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I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- 18 - 



~RWEQUIPMENT LABORATORIES 1 .  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Tables 7(a)  through 7(g) f o r  sane coatings and surfaces. 

4.4 Coating Thickness 

Thickness plays an bpor tan t  r o l e  i n  determiningthe emissivity and solar 

absorptivity characterist ics of a coating. 

low absorptivity inorganic paints (66) indicated t h a t  about 3 t o  5 m i l s  coating 

thickness was  required t o  cover metallic surfaces. 

solar  absorptivity (6,) and the solar absorptivity-emittance r a t i o  ( d;s/ E H) 

reached a mininnUn value with a 5 m i l  o r  greater coating thickness (Figure 60). 

Multiple coats of 1 t o  2 mils bu i l t  up t o  5 mils gave indications of having 

Studies made with high emissivity, 

The study also found t h a t  

superior bonding properties than a single 5 mil coat. 

4.5 Coatings and Substrates 

4.5.1 Coatings 

Coatings are classified as single a ides ,  multiple oxides, non-oxides, stably 

oxided al loys and paints. 

part of Tables 7(a) through 7 ( g ) .  

The high emittance members of each group are shown as 

4.5.1.1 Single Oxides 

The single oxides coatings screened by P.W.A. (54) are l isted below. 

hemispherical. emittance values are  shown f o r  temperatures ranging from 300% 

minimum t o  22OOoF maxinrum. 

Tote3 

Single Oxides 

1. Aluminum Oxide 

2. Ceric Oxide 

3. Chromic Oxide 

T o t d  Hemispherical Emittance 

.69 - .63 

-75 - 965 
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11. 

Cobalt Oxide (COO 

Manganese Oxide ( M n q  

Nickel Oxide ( N i O  1 
Silicon Dioxide (Si021 

Titania (Ti2031 

Zirconium Oxide (zro2) 

Stannic Oxide ( snO2 1 

"Titania Base" Powder 

.88 - .go 
-75 - -85 

.45 - .82 

-87 - .70 

.92 - .85 

8 7 7  - e82 

-83 - e 8 8  

.88 - .86 

4.5.1.2 Multiple Oxides 

The multiple oxide coatings screened by P.W.A. (54) axe l i s t ed  below. Total 

hemispherical emittance values are shown f o r  temperatures ranging from 300% 

minimum t o  2200% maximum. 

Multiple Oxides Tot& Hemispherical Emittance 

1. Silicates - Zirconium Si l icate  .83 - .51 
2. Spinels 

a) Ma@;nesium Aluminate (MgO - Al 0 ) .00 - .60 
2 3  

b) 4oqd Nickel Chrome Spinel 

60% Silicon Dioxide .88 - -82 

3. Titanates 

a) Barium Titanate (BaTi03) .75 - .64 

b)  Calcium Titanate (CaO Ti 02) .81 - e92 

c)  Iron - Titanium Oxide .85 - .07 

d)  Iron - Titanium-Aluminum Oxide .83 - -88 

4. Zirconates - calcium Zirconate .62 - -56 

- 20 - 



Minirmrm and maxirmrm values of t o t a l  hemispherical emittance are indicated for 

a31 substrates tested regardless of substrate o r  coating thickness. 

4 . 5 . 1.3 Non-Oxides 

The non-oxide coatings screened by P.W.A. (54) are listed below. 

hemispherical emittance values are shown below f o r  tmperatures ranging f’rosl 

30O0F minfrmrm t o  2200°F maximum. 

Total 

Non-Oxides Total Hemispherical Emittance 

1. Borides 

a) Crys tmine  Boron .70 - .00 

b) Boron and Si l i ca  -78 - -79 

c)  Molybdenum Diboride -42 - -64 

d) Tantalum Bride 049 - -59 

.43 - .60 e )  Zirconium Boride 

2. Carbides 

a )  Acetylene Black i n  Xylol 

b) Boron Wbide 

.72 - .92 

.76 - .8o 
c )  G r a p h i t e  Varnish -56 - e62 

d) Hafhium Carbide .52 - .62 

e )  Molybdenum Carbide -42 - -49 

.80 - .g2 

.05 - .07 

.4J+ - .59 

f) Silicon Carbide 

g) Silicon Carbide and Silicon Dioxide 

h )  Tantalum Carbide 

i )  Titanium Carbide .42 - .62 

j )  V a n a d i u m  Carbide .48 - .60 

- 21 - 



3. Fluorides - Calcium Fluoride 

4. Nitrides - Boron Nitride i n  Synar 

060 - e47 

-02 - .69 

4.5.1.4 

Some oxidized metals and t h e i r  alloys exhibit t o t a l  hemispherical emittance 

values above .7. 

range making an oxided metal surface unfavorable f o r  use i n  low temperature 

r adiat or-condensers . 

Stably Oxided Metals and Alloys 

Unfortunately, t h e i r  solar absorptivity values are i n  the same 

In  high temperature (above 12OOOF) radiator-condenser applications ( systems 

condensing potassium o r  rubidium vapor), the  effects  of higher solar absorp- 

t i v i t i e s  are not as pronounced and the use of oxided metal surfaces may be 

warranted. 

Oxided metal surfaces require heating t o  high temperatures t o  accomplish the 

oxidation process. 

are 1 b 0 F  with similar levels fo r  Inconel, Inconel X and Haynes Alloy 25. 

I 

Typical oxidizing temperatures required f o r  stainless steels 
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The stably oxided metals surfaces screened by P.W.A. (54) are listed below. 

Total hemispherical emittance values are shown f o r  300'F and 2200'F. 

Total 
Metallic and Oxidized Metallic Surfaces Hemi spherical Wtt anc e 

1. Columbium and Oxidized Columbium 

2. 

3. Cupric Oxide 

4. Molybdenum 

5. Oxidized Nichrme 

Columbium - I$ Zirconium U o y  

- 22 - 
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.20 - .34 
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6. Lithiated and Oxidized Nickel 

7. Oxidized AISI-310 Stainless Steel 

8. Tantalum 

9. Rrngsten 

io. ciirixi&-~ Black 

11. Platinum Black 

-63 - .% 

.47 - .84 

4.5.1.5 Paints 

Organic Enamels 

High emittance organic enamels are a t t rac t ive  from the standpoint t h a t  they are 

eas i ly  applied and can be applied to any substrate. 

Organic enamels w e r e  found t o  be u n f i t  f o r  long duration space applications since 

most of t he  coatings exhibit Wpreciable vapor pressures i n  a vacuum a t  room 

temperature (68). The ef fec t  is even more pronounced at elevated taperatures. 

The lowest temperatures expected would be about 200°F i n  the  indirect  fue l  cell  

radiator. 

A t  best, organic paints may be used where short duration thermal control appli- 

cations (weeks-months) are required below 575OF. 

and absorptivit ies are shown in Table 7(f) and 7(g). 

Typical paints, their emittance 

Water Glass Enamels 

Si l ica te  base paints are also known as water glass enamels. 

inorganic coatings indicates that alkali-metal silicates, pigmented with 

refractory silicate materials, were found t o  possess l o w  absorptivity-emissivity 

r a t io s  and high emissivities (66). 

Ektensive tes t ing  of 

These coatings have the  ahvantage of appli- 

- 23 - 



cation by standard spray, dip or  brush techniques. 

can be accomplished by low temperature curing cycles between 200 t o  4W°F. 

coatings are f lexible  and ductile, have excellent t h e m  s t ab i l i t y  characterist ics 

under 95OoF and are resis tant  t o  thermal shocks. 

on aluminum and magnesium based substrates which makes them excellent candidates 

f o r  low temperature water o r  organic radiator-condensers. 

properties of inorganic coatings are included i n  Tables 7(a) through 7(d). 

Stabilization of the  coating 

The 

These coatings have been applied 

Typical radiative 

4.5.2 Substrate Materials 

High temperature coatings (above 1200'F) have been successfully bonded t o  a wide 

range of substrates. 

columbium-l$ zirconium, nickel, columbium and molybdenum. 

such as beryllium and copper can accept some coatings applicable t o  310 stainless  

steel (49) due t o  the slmilarity i n  expension coefficients. 

These include aluminum (1010, 6061) 31.0 stainless steel, 

Substrate materials 

Where large differences i n  thermal expansion coefficients exis t  between substrate 

and desired coating, the difference can be reduced by W t i p l e  layering of 

several coatings. 

Low temperature organic and silicone coatings (below 1000°F) can be bonded t o  

most materials w i t h  adequate surface preparation. 

s t ra tes  can be coated with inorganic pigmented, a l k a l i  m e t a l .  s i l i ca t e  vehicle 

coatings . 

Magnesium and aluminum sub- 

4.6 Application Methods 

4.6.1 Themd Spraying 

H i g h  emittance coatings may be applied t o  radiator surfaces by t h e  plasma-twc 

- 24 - 
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and the Rokide thema3 spraying processes. 

The plasma-arc spraying process uses an e lec t r ic  arc t o  heat and ionize a vehicle 

gas. 

material i n  powder form. 

the union and the combination impinges on the radiator surface. 

(argon, nitrogen) are generally used i n  the  plasma-arc spreying process. 

The ionized gas is then combined with a second gas carrying the coating 

The coating material powder is melted or  softened by 

Inert gases 

The major advantage of the  plasma-erc spraying technique is  t h e  ab i l i t y  t o  protect 

the coated material f r o m  an oxidizing atmosphere. 

maintained below 40O0F while controlling coating thickness, f i n i s h  and density. 

The substrate material can be 

The Rokide spraying process uses an ignited IIllxture of cambustible gases and a 

so l id  rod of coating material. 

i n to  t h e  flame and is  carried by the gas stream t o  the surface t o  be coated. 

This process yields a more porous coating than t h e  plasma-arc process because of 

the lower gas veloci t ies  and temperatures used. 

The coating material rod vaporizes as it is fed 

Plasma-arc and Rokide techniques are applicable t o  stainless s teels ,  aluminum 

alloys, refractory metals and their  alloys, beryllium, copper alloys and cobalt 

8llOy.s. 

The Rokide process re-s t h e  use of a coating rod material t ha t  matches the 

thermal expansion characterist ics of the substrate material f o r  high temperature 

applications. 

4.6.2 Slurries 

Coating materia3 may be applied in slurry form. 

- 25 - 
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A slurry i s  a finely divided coating material suspended i n  a l iquid binder. 

It may be appl ied to  the radiator surf'ace by spraying, brushing or  dipping. 

The coating i s  air- and oven-dried t o  remove vola t i le  liquid. 

technique finds application where substrate materials cannot withstand the  

extreme temperatures of thermal spraying. 

are l is ted below: 

The slurry 

The more promising slurries considered 

slurry 

Aluminum phosphate 

syn= 

xylol 

curing w erature 

500 t o  800°F 

500% 

Room temperature 

4 6 3 Electrodeposition 

Electroplating i s  another method of applying a high emissivity coating t o  a 

radiator surface. The method i s  extremely useful i n  controlling the thickness 

of the desired coating. 

solutions include chromium, copper, nickel and platinum. Titanium, refractory 

metals and duminum tiwe electroplated from fused-salt electrolytes. 

solutions can also be used t o  electroplate aluminum. 

Metals and alloys that  can be electroplated from aqueous 

Organic 

Electrodeposition h a s  ma,ny advantages. 

be deposited at near zero stress. 

by applications of br ight  copper and nickel. 

controlled from a few millionths of an inch t o  100 mils. 

Thermally stable pure metal coatings can 

Surface defects and roughness may be leveled 

!The thickness of a coating may be 

Electroplating finds extensive use in  plating chromium black and platinum black 

on beryllium, stainless s tee ls  and nickel. ChraaniWn black can be applied t o  any 

- 26 - 
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surface that can be plated with nickel or  chromium. 

4-6.4 Vapor Phase Deposition 

Surface catalysis,  thermal decomposition or  reduction of a coating's vo la t i le  

compound are used t o  produce both metallic and non-metallic deposits on metal 

substrates (69). 

of aluminM, chromium and nickel. pyrolytic graphites can be produced by thermal 

decomposition of methane and acetylene on a heated surface at temperatures between 

1832 t o  459% (69). 

p p o l y t i c  grqhite coatings applicable only t o  l a w  thermal expansion substrates. 

The high t o t a l  solar absorptances (70) ranging from .85 t o  .gl of graphite i n  

general make them applicable only t o  high temperature potassium or  rubidim radi- 

ator  condensers. 

Therma;L decomposition of metal organic compounds produce deposits 

The deposition temperatures required make high emittance 

The major application of vapor phase deposition f o r  space radiator-condensers is 

limited. 

substrate and a high emittance - low solar absorptance coating when electroplating 

is impractical. 

coating, and has a high deposition rate ( t o  20 mils per hour) (69). 

It may be used 86 an intermediate layer of material between a m e t a l  

The technique produces good coverage of the surface, a pore-free 

4.6.5 Other C o a t i n g  Methods 

Chemical deposition, vacuum mete,llizin@; and painting are also techniques f o r  

coating materials. Chemical deposition finds application where the use of anodes 

and currents are not feasible. 

bmersion o r  displacement type 

vacuum metallizing consists of 

Platinum black is coated on beryllium by an 

coating process. 

evaporating the coating m e t a l  and condensing it on 
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the  surface t o  be coated. 

and t h e  coating thickness i s  generally less than 1 mi l th i ck .  

not considered practica,l f o r  large radiators and at t h e  present t i m e  i s  re lat ively 

undeveloped, 

The process 1s accomplished i n  a vacuum environment 

The process is  

Organic and inorganic coatings using volat i le  vehicles can be applied by t h e  

conventional painting methods of brush, dip or spraying. 

temperature or in  an oven at temperatures up t o  400% depending on t h e  type of 

coating being applied. 

Curing is done at room 
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5.0 REc0MMEMlATIoNs 

Based on the readily available data in the literature, the  following areas of 

work appear t o  wama,nt -her attention t o  more rel iably and accurately design 

and analyze condenser-radiators for space power systems: 

1. 

2. 

3. 

4. 

Low temperature ( 3009) emittance coating testing. Most of this 

work has been i n  t h e  higher temperature ranges, and as a result some 

coatings unacceptable at high temperatures that may be acceptable at 

fuel c e l l  temperature levels, f o r  instance, have been neglected. 

Atmospheric testing of emittance coatings. 

will be ground operated prior t o  f l i gh t ,  the  effect of this operation 

Since almost B;u radiators 

is iMportant. 

Compatibility of f i n  materials, tube materials and emittance coatings. 

Information on a wider range of combinations, including beryllium, i s  

needed. 

Meteoroid protection capability. 

protection thickness that accounts f o r  the duc t i l i ty  of amor materid 

i n  addition t o  density and elastic nodulus. 

Develup an expression f o r  amor 
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~ W E Q U I m E N T ~ ~ ~  

TABLE 5A MATERIALS COMPATIBILITY WITH WORKING FLUIDS 

NUMBERS IN PARENTHESIS ARE REFERENCE NUMBERS. 

TEMPERATURES SHOWN INDICATE NO OR LOW AMOUNTS OF CORROSION. 

(a) MORE TESTING REQUIRED TO CHECK OUT LONG TERM CORROSION EFFECTS. 

(WC) N O T  COMPATIBLE (VERY HIGH CORROSION RATE OR DISSOLVES) 
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NUMBERS IN PARENTHESIS ARE REFERENCE NUMBERS. 

TEMPERATURES SHOWN INDICATE NO OR LOW AMOUNTS OF CORROSION. 
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